INF 111 /CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau

Lecture Notes 4 - Testing

Previous Lecture

o Continue with XP
o No Silver Bullet
o Testing

I EOE N e

I Lecture Notes 4 2

Quiz #1 Today

o Write in Pen if you want it to be
regraded

I EOE N e

I Lecture Notes 4 3

Today’s Lecture
o More on Testing
Static Analysis
o Code Walkthroughs / Inspections
Formal Verification
Dynamic Testing
.

. Lecture Notes 4 4

] Typical Testing Process

Subset of Oracle Expected
Input

Program / [k

Subset of
Input Program / Output
Spec

2cture Notes 4 5

Different Levels of Testing

o System Testing

Defined at Requirements -> Run after integration
testing

o Integration Testing
Defined at Design -> Run after Unit Testing
o Unit Testing

Defined at Implementation -> Run after
Implementation of each unit

o Regression Testing (testing after Change)
[| Defined throughout the process -> Run after

modifcations
I Lecture Notes 4 8

V-Model of Development & Testing
(the big picture)

Develop Requirements Execute System Tests

Develop Acceptance Tests

Execute Integration Tests

Develop Integration Tests

Execute Unit Tests

Develop Unit Tests

Lecture Notes 4

Nl AN

Motivation

o People are not perfect
We make errors in design and code

Goal of testing: given some code, uncover as
many errors are possible

o Important and expensive activity

Not unusual to spend 30-40% of total project
effort on testing

)R e

Software Testing
o Exercising a system [component]

on some predetermined input data
capturing the behavior and output data
comparing with test oracle
for the purposes of

oidentifying inconsistencies

o verifying consistency between actual results and
specification
to provide confidence in consistency with requirements and|
measurable qualities
to demonstrate subjective qualities

o validating against user needs
o Limitations

VR b

only as good as the test data selected
LectleBbiRjECt to capabilities of test oracle 8

I Lecture Notes 4 10

The Purpose of Testing

Design and coding are creative. but...

o Testing is Destructive
The primary goal is to “break” the software

o Very often the same person does
both coding and testing
This is not ideal... why?
Need “split personality”:

owhen you start testing, become paranoid and
malicious

Surprisingly hard to do: people don't like

I EOE N e

Goals of Testing

o Reveal failures/faults/errors
o Locate failures/faults/errors
o Show system correctness

o Improve confidence that the system
performs as specified (verification)
o Improve confidence that the system

performs as desired (validation)

o Desired Qualities:
Accurate
Complete / thorough

I R e

Repeatable
Systematic
Lecture Notes 4 S

finding out that they made mistakes
Lecture Notes 4 11

Static Analysis

o Examine & analyze source code
o Goal:
Discovering anomalies and defects
May be used before implementation
Execution is not Required
May be applied to any representation of
the system
Requirements
Design
Test data, etc...

IR e

I Lecture Notes 4 12

Static Analysis

o Very effective technique for discovering errors

o They reuse domain and programming
knowledge

reviewers are likely to have seen the types of error
that commonly arise

o Examples:

Code Reviews &
Inspections

. Lecture Notes 4

I R e

Code Reviews (“Walk-throughs”)

o Developer presents the code to a small group of
colleagues
Developer describes software
Developer describes how it works
o “Walks through the code”
Free-form commentary/questioning by colleagues

o Benefits
Many eyes, many minds
Effective

I RN e

o Drawbacks

Can lead to problems between developer and colleagues
Lecture Notes 4

Inspection Process

E

. Lecture Notes 4 16

to be inspected
o Individual preparation
Each member inspects the code and the

Pre-Inspection Stages
o Planning
Select the team
Organize when and where
Ensure code and spec are complete
o Overview
Present general description of the material
|

Inspections

o Small Team
Author (Programmer)
o Silent observer
o Knows the code too well — might introduce bias
Reader
o Presents the code
o May have 1 or 2
Tester
o Reviews the code “Testing point of view”
o May have 1 or 2
Moderator
o Conducts the inspection
o Motivates other participants

o Not directly involved with the product being inspected
o Keeps the team focused and together
Lecture Notes 4

I R e

l spec
Lecture Notes 4 17

Program Inspection

o Should be short
o Exclusively focused on defects,
anomalies, & non-compliance with
standards
o Should not recommend changes or
suggest corrections
o Paraphrase code - afew lines at a
time
Express meaning at a higher level of
abstraction

IR e

I o Code is analyzed using a checklist
Lecture Notes 4 18

Code Checklist

o Wrong use of data
Variables not initialized
Array index out of bounds
Dangling pointers

o Faults in declaration / use of variables
Duplicate use of variable names

o Faults in computations
Div by 0

Type mismatch of variables
Lecture Notes 4

I R e

Code Checklist (2)

o Faults in relational expressions
Incorrect operator use (> instead of >)

o Faults in Control Flow
Infinite loops
Off by 1 errors

o Faults in Interfaces
Incorrect number of parameters
Passing the wrong type
Inconsistent use of global variables

. Lecture Notes 4

I RN e

20

Length of Inspection
o Can cover up to 500 statements per
hour
Depending on experience of team
Usually more like 125/hr
o Should not go for more than 2 hours
|

o Should be done frequently

. Lecture Notes 4 22

Inspections

o Cons:
Can be too shallow

Programmers can be defensive
o Evaluations of the programmer should not be
determined by reviews
Team may have insufficient knowledge of the
domain

I R e

Rework & Re-inspection

o Rework
Author corrects code

o Re-inspection
Can be done by team or moderator

Can either check for new problems that may
have arisen

Can verify errors were corrected

. Lecture Notes 4

I R e

21

. Lecture Notes 4 23

Inspections and Testing

o Inspections and testing are
complementary and not opposing
verification techniques

o Both should be used during the V & V
process

o Inspections can check conformance with
a specification

Can't check conformance with the customer’s
real requirements
Cannot validate dynamic behaviour

o Inspections cannot check non-functional

IR e

characteristics such as performance,
usability, etc.
Lecture Notes 4 24

Tools for Static Analysis

o Scan source text & detect possible faults /
anomalies

Look for possible erroneous situations such as:
o Unused variables
o Undeclared variables
o Unreachable code
o Variables used before initialization
o Parameter type mismatches
o Parameter number mismatches
o Uncalled functions or procedures
o Non-usage of function results
o Possible array bound violations

o Misuse of pointers
Lecture Notes 4

I R e

25

Today’s Lecture

o More on Testing
Static Analysis
Formal Verification
Coverage-Based Testing

R e

Take a break!

o Stretch, Relax
o Get some water, Use the restroom
o Get to know your classmates...

When we return...

o No Silver Bullet
o Testing

. Lecture Notes 3

o
m
—
(]

26

. Lecture Notes 4 28

Verification & Validation (revisited)

o Verification
“Are we building the product right?” (Boehm)
The Software should conform to its specification
testing, reviews, walk-throughs, inspections

internal consistency; consistency with previous
step

o Validation
“Are we building the right product?”

The software should do what the user really
requires

I R e

Before the Break

oTesting

Static Analysis
oCode Walkthroughs
alnspections

I R e

. Lecture Notes 4

27

ascertaining software meets customer’s intent
Lecture Notes 4 29

Quality Assurance : 5 Problems

#1 : Eliciting the Customer’s Intent
Getting the Specs to meet the “real needs”

#2: QA is inherently difficult
Systems can be complex making QA difficult
to perform
o Air Traffic Control - stringent performance
o Medical Diagnosis System -> Complex processing

IR e

. Lecture Notes 4 30

Quality Assurance : 5 Problems

#3 : Management Aspects
Who does what testing?
o Are developers involved?
How are bugs handled?
What is the reward structure?

#4 . QA Team vs. Developers
QA lays out the rules
Uncovers faults
o “image of competition”
Viewed by Developers as Cumbersome
o “let me just code”

#5: Can'’t test exhaustively

Lecture Notes 4

31

R

|
E

How QA would like the world to be

Complete formal specs
of problem to be solved

Correctness-preserving transformation
Design, in formal notation

Correctness-preserving transformation

il

Code, in verifiable language
l Correctness-preserving transformation

Executable machine code

l Correctness-preserving transformation

Execution
Lecture Notes 4 32

N RN e

... but in reality

Mixture of formal and

informal specifications
l Manual transformation

Design, in mixed notation
l Manual transformation
Code, in C++, Ada, Java, ...
l Compilation by commercial compiler
Pentium machine code
l Commercial firmware

Execution on commercial hardware
Lecture Notes 4 33

10 IR =

Unit Tests

o Developer tests the code just produced
Needs to ensure that the code functions properly before
releasing it to the other developers

o Benefits
Knows the code best
Has easy access to the code

o Drawbacks
Bias

o “| trust my code”
o “| always write correct code”
Blind spots

o Possible Solutions:

Outside Testers
Walkthroughs / Inspections

Lecture Notes 4 34

E

Formal Verification

o Techniques for proving consistency
between two software descriptions
to prove consistency of specification
to prove correctness of implementation

Correctness 2>

Correct with respect to the specification

Lecture Notes 4 35

Verification with Formal Specs

+ User Needs

informally vaidate
consistency between
needs and requirements

Requirements
!! Specification

ormal Requirement:

informally verity
consistency between
formal and informal req analyze properties
of requirements.

NOTE: may be multiple Specification

levels of specification

and appropriate verification

atany stage analyze properties
G of module interfaces

Specification

Formal Module
Specifications

System Software
Implementation
Lecture Notes 4 36

verify consi
between spedficatio

analyze properties
of modules

verify consistenc,
between

and implementation

Formal Verification / Validation

o Some shortcomings
does not show other qualities
o Performace, usability, etc..
May not scale up

only informal techniques for validating against user
needs

subject to assumptions of proof system
only as good as formal specification
Not trivial - tedious
Not always cost effective
o Generally used on a part of the system

. o Example: Mathematically Based Verification
Lecture Notes 4 37

I R e

Mathematically Based Verification

o Must have formal specifications

Notation must be consistent with mathematical
verification techniques

o The programming lang. must have formal
semantics

o This is an intensive process but...
Can verify correctness

I RN e

o Generally,

. Not cost effective for large systems
Lecture Notes 4 38

. Lecture Notes 4

The problem with Testing

o Can't test exhaustively
Not feasible to run all those test cases
Not feasible to validate them once they are run

oWant to verify software =
o Need to test >

So,

oNeed to decide on test cases >

But,

no set of test cases guarantees absence of bugs,

40

E

Tools for Mathematical Verification

o Can it be automated?
Theorem provers
o Assist in developing proofs
Usually work with a subset of the program
Not completely automated

I R e

. Lecture Notes 4 39

. Lecture Notes 4

Testing Techniques
So,

o We need to find a systematic approach to
selecting of test cases that will lead to:
accurate,
acceptably thorough,

repeatable identification of errors, faults, and
failures?

41

Practical Issues

o Purpose of testing
Fault detection
High assurance of reliability
Performance/stress/load
Regression testing of new versions

o Conflicting considerations
safety, liability, risk, customer satisfaction,
resources, schedule, market windows and
share

o Test Selection is a sampling

technique

Lecture Nitel

Fundamental Testing Questions

o Test Criteria: What should we test?

o Test Oracle: Is the test correct?

o Test Adequacy: How much is enough?
o Test Process: Is our testing effective?

I R e

| How to make the most of limited resources?

. Lecture Notes 4 43

What Does an Oracle Do?

o Your test shows cos(0.5) =
0.8775825619
o You have to decide whether this
answer is correct?
o You need an oracle
Draw a triangle and measure the sides
Look up cosine of 0.5 in a book

Compute the value using Taylor series
expansion

R e

‘lTest Criteria

o Testing must select a subset of test cases
that are likely to reveal failures

o Test Criteria provide the guidelines, rules,
strategy by which test cases are selected
actual test data
conditions on test data
requirements on test data

o Equivalence partitioning is the typical
approach
a test of any value in a given class is equivalent to a
test of any other value in that class
| if a test case in a class reveals a failure, then any
other test case in that class should reveal the failure
some approaches limit conclusions to some chosen

Leoture (Gi@SS Of errors and/or failures »

Check the answer with your desk
Lecture Nolesc?ICUIator 46

percentage of seeded faults found is proportional
to the percentage of real faults found

o Independent testing
faults found in common are representative of total

Test Adequacy

o Coverage metrics
when sufficient percentage of the program
structure has been exercised

o Empirical assurance
when failures/test curve flatten out

o Error seeding

|

Test Oracles

oWhere does “expected output” come
from?

Atest oracle is a mechanism for
deciding whether a test case execution
failed or succeeded

oCritical to testing
oDifficult to create systematically

oTypically done with a lot of guesswork
Typically relies on humans
great dependence on the intuition of testers

oFormal specifications make it possible to
automate oracles
Lecture Notes 4 45

I R e

. population of faults
Lecture Notes 4 47

